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We study the poor decay of correlations for equilibrium states of 
inhomogeneous fluids and solids, in the regimes of both classical and quantum 
statistical mechanics. Our main observation is the usefulness of the statistical 
mechanical expression of the stress tensor and its long-range correlations with 
the particle density. From this we are able to infer a very slow decay of 
correlations for the various molecular distribution functions under discussion. 
The derived results are of relevance both for completely inhomogeneous systems 
such as quasicrystals or granular structures and for the slightly more regular 
cases of, e.g., phase separating layers in fluids and solids, ideal crystals, etc. As 
one of the byproducts we prove the nonexistence of plane quantum interfaces in 
two dimensions (thus extending earlier results of Requardt to the quantum 
regime). The results hold for arbitrary potentials of not too long range. 

KEY WORDS:  Inhomogeneous equilibrium states; phase boundaries; stress 
tensor; poor decay of correlation; static susceptibilities. 

1. I N T R O D U C T I O N  

While most of the bulk properties of classical (quantum) statistical systems 
are understood at least in p r i n c i p l e ~ v e n  their phase transitions and 
critical point behavior and while in the last decade many exact results 
have been derived for classical lattice systems in the regime of spatial phase 
coexistence (cf., e.g., the many papers by J. L. Lebowitz and his group), 
there has been less progress in understanding the formation of non-trans- 
lation-invariant Gibbs states of infinite continuous systems in the absence 
of exterior fields, especially interfaces between various substances or phases 
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and modifications of a single substance in the regime where they can 
spatially coexist. (As an aside we would like to add the remark that, con- 
trary to a perhaps widespread belief, there are marked differences between 
continuous and lattice models, in particular concerning the phenomena we 
are referring to). 

While, e.g., the statistical mechanical theory of surface tension dates 
back to the days of van der Waals, it was only quite recently understood 
that various of the tacitly made underlying assumptions are not correct or 
have to be modified. As far as the l iquid-vapor interface is concerned, a 
recent account of the state of the art was given in the beautiful book of 
Rowlinson and Widom./1) Other aspects have been discussed in, e.g., 
Refs. 2 and 3, the latter also treating systems like liquid metals and some 
quantum systems. 

However, there seems to be much less work on quantum continuous 
systems, particularly papers discussing classical and quantum systems on 
more or less the same footing. Furthermore, whereas there are certain dif- 
ferences concerning the problem of, e.g., solid-liquid, solid-gas coexistence 
as compared to the liquid-vapor situation (cf., e.g., Ref. 4) most of the 
analysis can be done along the same lines and after some modifications 
also for quantum continuous systems. 

One of the main differences as compared to phase transitions in the 
bulk is the role the exterior thermodynamic state fixing field plays in this 
context, which in the process of quasiaveraging is assumed to be switched 
off after the thermodynamic limit has been taken. There are arguments that 
for, e.g., space dimension d~< 3 the interfacial layer starts to oscillate when 
the gravitational field goes to zero such that an interface may be defined 
only locally but not globally. This is, however, a subtle point, since the 
oscillations go only with the log of the surface area and the reasoning rests 
on several assumptions which are both crucial and difficult to verify, such 
as analyticity of the Fourier transform of the direct correlation function 
c/2)(rl, rz) in the transverse direction (cf., e.g., the remarks in Refs. 1, 5, 
and 6). 

What can, however, rigorously be proved is that there are long-range 
correlations in the two-particle correlation function 

p~)(rl, r2)"= p(2)(rl, r2)-p(l)(rl)" p(1)(r2) 

in the interface of the type <[(r  I - r 2 ) •  2/ if a stable plain interface 
exists at all (cf. Ref. 7). This may have certain consequences for various 
physical quantities, such as the compressibility in the interfacial layer, and 
for the statistical mechanical expression of surface tension, some of which 
have been discussed in Refs. 7 or 8. But we would like to emphasize that 
one only gets information about the long distance behavior of [p(r2)(q, r2)[ 
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and not of p~)(rl, r2) itself. Since p~) oscillates around zero as a function of 
( r l -  r2), integrals over terms containing p~), as in expressions for the sur- 
face tension, might therefore possibly exist in a generalized Riemann sense 
while they diverge with p(r 2) substituted by [p~)[. 

In any case some expressions of physical relevance may become nearly 
infinite in the interface, which may be interpreted either as meaning that 
there is no stable interface at all or that the interfacial layer displays certain 
quasicritical properties. On the other side, we have some difficulty in 
imagining that the interface between, e.g., a solid and a gas would actually 
wildly fluctuate in the absence of a gravitational field. Since at least our 
approach in Ref. 7 also covers experimental setups like these, we are not 
entirely convinced that there is only one universal interpretation of the 
phenomenon. 

The problem of spatial phase coexistence can be approached on 
roughly two levels of complexity. One can assume either that a certain 
residual space symmetry survives the process of phase separation or that 
the inhomogeneous equilibrium state does not support some sort of restric- 
ted invariance group. A typical candidate of the first kind is a plane inter- 
face separating two phases like a liquid and its vapor or a solid and a 
liquid. In the latter case ~d is broken up into small fractions of the various 
phases or modifications of one or several substances. Well-known examples 
are superconductors of the second kind with their filament structures, and 
formation of Weiss domains in magnets or quasicrystals. It depends on the 
balance between bulk and surface free energy which state is actually 
favored. 

According to this we divide the treatment into four parts. We start in 
Section 3 with the general inhomogeneous situation of classical statistical 
mechanics of continuous systems, i.e., we do not exploit any symmetry of a 
certain subgroup of space translations. We continue in Section 4 with the 
corresponding quantum case. In Section 5 we discuss the special but impor- 
tant situation of a planar interracial layer both for classical and quantum 
continuous systems. What we are after in all these different setups is to dis- 
play the linkage between the various degrees of breaking of translation 
invariance (resp. existence of density gradients) and long-distance 
correlations between certain relevant physical quantities and the resulting 
physical implications of this. 

To this end, Section 2, apart from fixing notations and terminology, 
introduces the notion and properties of the statistical mechanical 
expression of stress tensor, in both the classical and quantum regimes. It is 
the stress tensor that turns out to be the relevant notion in this context. 
Since, espcially in the quantum case, a derivation from first principles of 
this quantity is given seldomly or only in some approximative way, we take 
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the chance to give our own, self-contained derivation, which may be of use 
in itself. 

As to Section 3, there already exist rigorous papers attacking the 
problem from various directions. In Ref. 9 the case of general spontaneous 
symmetry breaking in classical continuous systems was discussed, including 
space translations. In Ref. 10 the special case of breaking of translation and 
rotation invariance was treated for a wider class of potentials. While in 
Ref. 9 the classical Kubo-Mart in-Schwinger  property was used, Ref. 10 
exploits the BBGKY hierarchy. These two concepts are related to each 
other, but possibly not completely equivalent (cf., Ref. 11). Our, as we 
hope, new contribution is to bring the stress tensor into play, thus making 
the physical implications and the reasoning much more transparent. 
Furthermore, the section serves as a warmup exercise for Section 4, where 
the corresponding situation is discussed for the quantum case. 

It is characteristic that in the case of quantum continuous systems the 
expectation value of the kinetic part of the stress tensor is not trivial, in 
contrast to the classical equilibrium case. In particular, the off-diagonal 
terms of the closely related pressure tensor do not vanish, which reflects the 
nontrivial coupling of fluctuations in the various momentum components 
with each other and with the particle density. Furthermore, both the 
expressions we start from and the calculation in between differ from the 
ones in the classical case. The final results, however, are similar. 

In Section 5 the special situation of a planar interfacial layer is treated 
for the quantum regime. It is typical that the results are stronger in this 
case due to the residual translation invariance in the directions parallel to 
the interface. Since the case of a one-component classical system was 
already treated in Ref. 7, we make only a short aside concerning a special 
multicomponent system, i.e., the so-called Widom-Rowlinson model (cf. 
Refs. 12 14), which has the remarkable property of displaying a bulk phase 
transition already in two dimensions, and concentrate on the plane inter- 
face in continuous quantum systems (for both bosons and fermions). 

2. C O N C E P T S ,  T E R M I N O L O G Y ,  A N D  THE STAT IST ICAL  
M E C H A N I C A L  EXPRESSION OF THE STRESS T E N S O R  

Since most of the terminology we will rely on has been frequently used 
in the papers mentioned above (e.g., in Ref. 7 or Ref. 10), only a few 
remarks are in order here. 

We stress the fact that we are exclusively dealing with infinite systems. 
Then the infinite phase space of classical statistical point mechanics com- 
prises the countable sequences 

X : =  {(x,), xi := (r ,, pi) e Nd x Nd} 
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It is assumed that the local finiteness property holds, i.e., the set of con- 
figurations in phase space with infinitely may particles in a finite volume of 
coordinate space is of "Gibbs" measure zero. An n-particle observable, say 
A, is (usually) given by a smooth symmetric function a on ~Jx  R J and 
having a finite support with respect to the position coordinates: 

A(X):= ~ a(xil ..... x,n ) 
[il,...,in} 

{il ..... in} all ordered n-tuples. 
The Poisson bracket of A, B reads 

(2.l) 

{A, B}(X) := ~ (OA/Or,. O B / O p , -  OA/Op, "OB/Or,) (2.2) 
i 

Sometimes slightly more general objects have to be used, such as the par- 
ticle density: 

n ( r ) ( X )  := ~ 6(r - r,) (2.3) 
i 

or the momentum density 

p ( r ) ( X )  := ~ Pi" c~(r - r i )  (2.4) 
i 

The n-particle distribution functions p~ 1,..., r,,) are given by 

p(")(r,  ..... rn):= ~, <(~( r , - - r i , ) . . . c } ( r~ - - r i , ) )  (2.5) 
{il,...,in} 

with ~..-) the expectation with respect to the thermodynamic equilibrium 
state. We have in particular 

(n(r) )  = pl'l(r), ,f21~r ~ r  t l , r 2 ) = p ( 2 ) ( r l  r2) p( l l ( r l ) 'P (1) ( r2 )  (2.6) 

w i th  p(~l(r l ,  r2) ~ 0 fo r  Jr1 - r21 ~ oo in  a pure phase. 
These pure phases of the system are assumed to be prepared by, e.g., 

the Bogoliubov quasiaverage method or by imposing suitable boundary 
conditions. We mentioned in the introduction that in case of, e.g., planar 
interfaces this concept may be problematic, at least for certain systems 
(preparing a "pure phase" implies in this context that also the phase boun- 
daries have been fixed). 

Further concepts will be introduced in the places where they will be 
needed in Sections 3 5. There is, however, a physical quantity that will be 
of particular importance in the following and is worthwhile discussing in 
more detail here. This notion is the statistical mechanical expression for the 
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stress tensor (resp. pressure tensor). We start with its derivation in classical 
statistical mechanics. 

Taking the time derivative of the expression (2.4) for the momentum 
density p(r), we get (with H := Y~i p~/2m + �89 V(r i -  r/)) 

(d/dt) p~(t) := - {H, p~(r)} 

- Or,~[~(1/m) pTp~a(r-r,) ] 

+ �89 Z F~( ij)[b(r - r~) - 3(r - rj)] (2.7) 
i r  

where r~j:=r~-ri, F~:=-8V(r~j) /Or 7, and V is the reflection-invariant 
two-body interparticle potential (for simplicity we treat only the case of a 
two-body force). Our strategy is to express the rhs as the divergence of a 
certain quantity in order to get something like a "conserved current" 
relation. 

The second term on the rhs can be rewritten as 

�89 ~, F~(r,y)[f(r - ri) - 3(r - rJ)] 

fo =�89 2 F~(r(/) (d/ds) b ( sr ,+(1-s ) r j - r )ds  
i vsj 

Equation (2.7) now reads 

(d/dt) p~(r)= - -~r[ '  [~i ( l /m)p7 pC g(r - - r i )  

fo' ] + �89 

= ~rf l~7=#(r)  (2.8) 

where - [ ]  is called the statistical mechanical expression for the stress 
tensor cr~(r). 

Taking the expectation value of - a ~ ( r ) ,  we get the so-called pressure 
tensor p~n(r). 

The expression (2.8) was first derived by Irving and Kirkwood (~5) by a 
slightly different method. The nonuniqueness of the definition of the stress 
tensor is apparent from our derivation. We chose a straight line in the 
integral ~ds(5(...) connecting r~ and rj. Any other curve joining ri, rJ 
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would do a similar job, leading, however, to different a~(r) (in this context 
cf., e.g., Ref. 16). 

In the case of quantum statistics things are slightly more complicated 
due to the operator character of the expressions. We assume that the par- 
ticle creation (annihilation) operators ~ +(0) to satisfy Bose (resp. Fermi) 
commutation relations, i.e., 

O(r)  0 + ( r ' )  T t~ + ( r ' )  t~(r) = 6( r  -- r ' )  

+ (r)  ~ + ( r ' )  -T- ~ + ( r ' )  0 + ( r )  = 0 = O( r )  ~fl(r') -T- O( r ' )  O( r )  

with 
8,g,(r) = (i/h)[H, g,(r)] 

H= ff-~2m f dar V$ + (r) Vt~(r) 

(2.9) 

(2.10) 

+l  f f  
"2 3 dar ddr' ~9 + (r) ~+(r ' )  V(r -  r') tp(r') ~(r) 

The momentum density reads 

p~(r) = (h/2i)[ ~ + (r) 8~(r)  -- 8~J + (r) 0(r)]  (2.11) 

and the counterpart of (2.7) is 

(d/dt) p~(r) = - (h2/2m) 8/~{J~ + (r) 8~O(r) + a=~ + (r) J ~ ( r )  

- � 8 9  a~E0 +(r) r } 

- f  a~=V(r-r')~+(r)O+(r')O(r')O(r)ddr ' (2.121 

To write this as a divergence of a tensor we again have to transform 
the second term on the rhs into another form: 

f ddr ' a~V(r- r') ~b +(r) ~ + (r') ~(r') ~(r) 

= f  ddr ' d%" �89 

• a=V(r ' -  r") 4, + ( / )  4, +(r") ~,(r") r 

= -Ora[f  ddr' ddr" l (r 'B--r"~)UV(r ' -r  ") 

x dsD(sr '+(1-s)r"-r)O+(r ' ) lp+(r")~(r")~(r ' )  (2.13t 
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Thus we arrive at 

[ (hZ/2m){ J ~  + (r) O~(r) + 0~9 + (r) J~(r )  (d/dt) p~(r) O rl~ 

- � 8 9  + ( r )  4,(r)] } 

- �89 ( r ' ~ - r " ' ) U V ( r ' - r  ") 

x d s3 ( s r '+(1 - s ) r " - r )O+(r ' )O+(r ' )O(r ' )O(r  ') 

(2.14) 

Again the expression - [ . . - ]  may be called the microscopic expression for 
the stress tensor a~(r) in the quantum case. 

3. I N H O M O G E N E O U S  CLASSICAL S Y S T E M S - - G E N E R A L  
CASE 

We assume that all the inhomogeneities, such as phase boundaries, 
crystalline or granular structures, etc., have been fixed by appropriate 
boundary conditions at infinity as indicated in the introduction. While the 
approach is more or less the same irrespectively of the kind of 
inhomogeneity, we restrict ourselves for simplicity in this section to 
inhomogeneities reflected in a nonvanishing density gradient, i.e., 
VpI1)(r) % 0 at some places (of course, there may be more general types of 
symmetry breaking, as in liquid crystals). 

The connection between a density gradient and higher correlation 
functions can be established by the expression in the following lemma: 

Lemma 1. Let PR := Zi PifR(ri), where fR satisfies 

(i) O~<fR(r)~<l forall r ~ a ;  f R ~ C ~ ( ~  J) 

(ii) fR(r)=l  for [rl~<R 

(iii) fR(r)=O for Ir]~>R+e 

Then the following relation holds: 

Vp(1)(r) = lira <{PR, n(r)}) (3.1) 
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ProoL Let P~ be the ~th component of PR- Then 

< {P~,n(r)} >= --<~ (VpjP~)[Vrja(r--ry)] > 

= -- Z/R(rY) { ,  a~) 6(r--r,)> 

= - f  dar' p(1)(r')fR(r') ~ a(r- r') at; 
8 

= aT [P(l/(r) fR(r)] (3.2) 

Whenever R >  Irl, we have fR(r) = 1 and the lemma is proven. | 

Remark. The reason for making a spatial cutoff in the overall 
momentum and then taking limits is that Z j  & exists only in a formal sense 
and is not really a well-defined object (for details see Ref. 9). 

Obviously we have 

<{PR, n(r)} > = ({PR,  n(r)-- <n(r)> } > (3.3) 

In the next step we use the classical static KMS condition la~'17) 

< {A, B} > = fl( B{A, H} > (3.4) 

yielding in our case 

({PR, n(r)}> =fi[<n(r){PR, H } > -  <n(r)>({PR, H}>]  (3.5) 

While usually the KMS condition has been formulated for bounded obser- 
vables, it can be shown that it also holds in our more general case. The 
critical condition is not so much boundedness of observable as their 
localization in bounded sets of the configuration space (i.e., with respect to 
the r i variables). 

With P,~=S ddr'p~(r')fR(r'), we can replace { P ~ , H }  by 
Sddr'fR(r')Y~Ja~/3(r') [cf. (2.11)], so that we get 

c3~P(a)(r)= R~lim flfdJr'fR(r')[(n(r)~Ja~/~(r')) 

--(n(r))(~Ja~(r'))] (3.6) 

822/45/5-6-4 



824 Requardt and Wagner 

or, after partial integration, 

63~p(1)(r) = --fl JLmm fddr'[trl(r)~ 6~[tfR(r')ff~B(r')) 

-- ( n ( r , ) ( ~ O ~ f e , r ' ) a ~ r  (3.7) 

This expression immediately leads to the following theorem about the con- 
nection between the presence of inhomogeneities and poor decay of 
correlations. 

Theorem 1. Vp(]~(r)=O, whenever/~< 0% and 

(i) fd~rlrlVlVV(r)]<oo for 0~<v~<l 

(ii) (n(r)  cr=~(r')) - (n(r)) (r  = o ( ) r - r ' l  - ( J - l l )  as 
I r -  r'l ~ oo 

Proof. Assumption (i) is necessary in order that all expectation 
values occuring in (3.7) and (ii) are well-defined as we do not assume any 
further property of the p(,I apart from uniform boundedness. Assumption 
(i) allows us to write (3.7) as 

UP(~)(r) = - B 2irnoo f d % ' 2  J f R ( r ' ) [  (n(r)  o-~(r') ) B 
- ( n ( r ) ) ( ~ ( r ' ) ) ]  (3.S) 

The support of J f R ( r ' )  is contained in a spherical shell with radii R 
and R + e. Therefore, as r is fixed, boundedness of IVfe(r)l and (ii) imply 

f ddr ' J J ~ ( r ' ) [ ( n ( r )  ~ # ( r ' ) )  -- (n(r))(~r~#(r ' ))  

= O ( R  ~ 1)o(R (~ 1))=o(1) as R--*oo 

Remark  I. Theorem 1 remains valid if r  is replaced by its 
spherical average 

5=e(r ') = ~=~(Ir'l ) = f d~ a~(Ir ' t ,  Q) 

Remark  2. It is one of the merits of employing the notion of stress 
tensor in this context that one gets space derivatives J in front of a ~#. By 
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partial integration and JfR(r')  - 0 for ]r'I <~ R it then becomes immediately 
obvious that n(r) and a~B(r ') are correlated over long distance if 
O~p(l)(r) #0. 

Assuming Maxwellian nature of states from now on, we derive some 
estimates concerning the decay of truncated n-particle density functions. 
For this purpose, we insert the explicit form of o ~p into (3.7). Performing 
some trivial integrations and using 

we get 

d s 6 ( s r l + ( 1 - s ) r 2 - r ' ) =  d s 6 ( ( 1 - s ) r , + s r 2 - r '  ) 

(~ r 
O~p(1)(r)=fl lim ~ ~| d~r' | ddp ' 

R ~ / ~  

x JfR(r')m-lp'~p'/~[p(2)(r, r', p ' ) -  p(~)(r)p~l)(r', p')]  

f dUP ' JfR(r) m-lp'~p'~p(1)(r, + p') 

x ds(5(srt+(1-S)rz-r')[p(3)(r, rl,r2)-O(l)(r)p(2)(ra,r2)] 

-- f ddrt f ddrl ~fl/R(f) ~V(F 1 - - r  ) (  r ~ ~ l r ~) 

x ds6 ( s r l+(1 - s )  r-r')pl2)(r, rl) (3.9) 

following theorems are carried out using various The proofs of the 
estimates of (3.9): 

T h e o r e m  2. Vp(1)(r) =0,  whenever f l<  ~ and 

(i) fd~rlr[~]VV(r)l<~ for O<<.v<~d 

(ii) p~)(rl,r2)=o([ri_r2[-(d 1)) as [ r l - r z [ ~  

(iii) p~l(rl, r2 ' r3 ) = o ( [ r x  _r2[ (a 11) uniformly 
inr3 as [r l - r 2 [ - ~  
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Proof. As we restricted ourselves to Maxwellian states, the first term 
on the rhs of (3.9) yields 

f dJr ' f  ddp'~ Onfn(r ') m ,p,~p,n 

x [p(2)(r, r', p')--p(1)(r)p(2)(r', p ' ) ]  

= f dar , fl 1 c~fR(r,) p~l(r ' r') 

=O(Rd-1 )o (R  (d- 1)) = O(1) 

as R ~ oo. Here we used (ii) and the support  proper ty  of ~?~fR, ment ioned 
in the proof  of Theorem 1. 

The second term on the rhs of (3.9) vanishes whenever R >  ]rl. In 
order  to estimate the third term, we first note that  

p]3)(rl, r2, r 3 ) : =  p(3)(rl, r 2, r3)--p(l)(rl)p(=)(r2, r3) 

=p~l(rl ,r2,  r3)+p(l)(r2)p~)(rl ,r3)+p(l)(r3)p~)(rl ,r2) (3.10) 

Using (ii) and (iii), we can split this expression into two terms, one of 
order  o(Iri--r2j-(d-1)), the other  of order  o ( I r l - r 3 ]  Id 11). Now, 

f d+.f d~r, f d~r2 JS.(r'l ~V(r,-r2t(r,~-4) 

J2 x ds6(sr l+(1-s ) r2-r ' )p~g) (r ,  rl ,rz) 

= f dUr'f darl f dUr'2 J fR( r ' )O~V(r ' l ) r ' f  

f2 X dsg)(r l - (1-s)r '2-r ' )p~3)(r ,  r l , r l - r '2 )  

f dar'f  dug'2 c~[3fR(r ') ~ , ,is = 0 V(r2)r 2 

x dsp~3~(r, r '+ (1 -s)r'2, r ' - s r l )  
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At this point, it is advantageous to split the integration over r~ into the two 
domains, [r~J ~< R/2 and Ir~[ > R/2. As the support  of O~fR(r ') is contained 
in the shell R ~ l r ' l  <~R+e,  Ir'21<~R/2 implies I r '+ (1 - s ) r ' 2 l  >~R/2 and 
I r ' -  sr'~l ~ R/2 and therefore 

p]3)(r, r' + (1 -- s)r'2, r' -- sr'2) = o( R - ( a -  1)) 

Thus 

f dar' fir'21 ~< R/2 ddr'2 J fR ( r ' )  a~V(r'2) 

1 

xri '~ ds .?~(r, r '+ (1 -s ) r l ,  r '-sr~) 
o 0 

f J d  ,[~ ~ W z J  = O ( R  a - l ) O ( R - ( o : - I ) )  a t 2 r  2 u ~ ( r 2 ) = o ( 1 )  
Ir;I ~< 8/2 

as fr/fVV(r){ is integrable. 
In case of the other domain rr~l > R/2 we use uniform boundedness of 

Ip?~i: 

(" 

! d"r' | d~r'~ J f R ( r ' )  ~ ' '~ c? V(r2)r 2 
,1 J~ r'~l > R/2 

f l  - sr x dsp]31( r , r '+(1 - s ) r ' 2 ,  r ' ) 

• maxlp~3)[ �9 Ir~l a-  l(2/R) J - I  

f 
= O ( R a - l ) R - ( d - 1 )  | dar,2 , a , [r21 [VV(ra)[=o(1)  

JI r21 > R/2 

since the integrability of IrlalVV(r)l implies 

lim I dJr [rlalVV(r)j = 0  
R .~ eo rl > R/2 

Provided R >  Irl, the fourth term on the rhs of (3.9) can be written as 
follows: 
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f d r'f a'n Y r)(r~ ~ -  r ~) 

f/ x ds~(sr l+( l - s )r -r ' )p(2) (r ,  rl) 

= f darl ~ f] ds ( r ~ - r  l~) 0/~R(Srl + ( 1 - - s ) r )  c3~V(rl--r) p(2)(r, r,) 

= f ddrl [fR(rl ) --fR(r)] ~V(r  I r) p(2l(r l ,  r)  

= f darl E.fR(r,)- 1] O~V(rl--r) p(2)(rl, r) 

= f  darl [ fe(r l ) - - l](~V(rl - -r)p(2)(r l , r )  
I r l ]  > R 

The modulus of this last expression is bounded by 

max pt2) f darl [VV(rl  - r)[ 
]rI[ > R 

Thus, it vanishes as R ~ oo due to the integrability of ]VV(r)[. 

T h e o r e m  3. Vp(Jt=0,  whenever f i<  c~ and 

(i) f dJr[Vr(r)[ < oo 

(i) p(r2)(rl,r2)=O(lrl-r2[ (a+~l) as [ r , - r z [ - - + o o  

(iii) p~l(rl, r> r3)= 0( I r l -  r2l-tJ+,:l) uniformly in 
r 3 as [ r l -  r21--+ 

ProoL The estimates for the first, second, and fourth terms on the 
rhs of (3.9) given in the proof of Theorem 2 also apply in this case and 
need not be repeated here. 

The third term can be written as follows: 

f ddr'f ddrl f ddr2 Z ''fR(f) "V(rl- r2)(rl~--r2~) 

f2 x ds(~(srl+(1-s)r2-r')p~g)(r, rl,r2) 
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= f d% f d% f~ ds 2 (x#l --x#2)cq/3fR(srl + (1--s)r2) 
# 

• 63~r(rl -- r2) p~3)(r, r 1, r2) 

= f ddrl f ddr2 [ f R ( r l ) - - f . ( r 2 ) ]  ~ V ( r  I --r2)pl3)(r, r 1 , r2)  

Condi t ions  (ii), (iii), and (3.10) imply 

O~V(rl - r2) p~3)(r, r I , r2) ff L I ( ~  2d) 

for fixed r. Thus,  we can use Lebesgue 's  domina ted  convergence theorem to 
write 

lim f ddr, f ddr2 [fR(rl)--fR(r2)] ~r(rl--r2)p]3)(r, rl,r2) 

: f ddrl f ddr2 2i?ov ffR(rl)-- fR(r2)] UV(r,--r2) p~3'(r, r 1 

= 0  as lim [ f R ( r l ) - - f R ( r 2 ) ] = O  
R~: )C  

pointwise in []~2d. 

, r2) 

Remark 1. Given  a non-Maxwel l i an  m o m e n t u m  distr ibution,  
Theorems  2 and 3 remain valid under  the addi t ional  requirement  

f dJP2 P~P#2[pl2)(rl, r2, P2)-PI')(r,) PI"(r2, P2)] 

= o ( I r ~ - r 2 l  - t d -  1)) 

as Irl - r21 -* oo. 

Remark  2. One should ment ion  that  the s ta tements  of Theorems  2 
and 3 have already been proved  in an app roach  exploit ing the B B G K Y  
hierarchy by G r u b e r  el a/. (1~ 

It is not  as tonishing that  the use of  the K M S  condi t ion yields identical 
results, since classical B B G K Y  and K M S  propert ies  are known to be 
equivalent  in the case of Maxwel l ian  m o m e n t u m  distributions.  (~I/ 

We gave an al ternat ive p roof  for several reasons:  First, the techniques 
employed  can immedia te ly  be transferred to the q u a n t u m  case. Second, our  
proofs seem to throw some addi t ional  light on various suppor t  and cluster 
propert ies  as well as the behav ior  of the kinetic contr ibut ions.  
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Furthermore, Theorems 2 and 3 appear as natural and immediate con- 
sequences of our KMS approach which, however, comprises much more, 
since it also leads to correlations between more general physical obser- 
vables, such as density, stress, etc. 

We conclude this section with the following nice observation: 

Proposit ion 1. Let the KMS state obey strong clustering in time, 
i.e., lim,~<A.B,)=<A>'<B>, with time evolution given by the 
Liouville operator; then the foRowing holds: 

(A .B>-(A>. (B>=f l  1 dt ({A,B,}> (3.11) 

Proof 
f ,o fo <A.B>- (A>. (B>=I im,~  dt'(d/dt')(A.B,,>= dt' (A{B,,,H}> 

o c  

=~ l f? dt <{A,B,}> 

(the last equality being a consequence of the KMS condition). 
On the one hand, the above relation establishes a link between static 

(i.e., equal time) and a special sort of dynamic correlation. On the other 
hand, it is the latter that has a direct analog in the quantum case, while the 
counterpart of the static correlation does not seem to have any immediate 
physical interpretation. We shall come back to this point at the end of the 
next section. 

4. I N H O M O G E N E O U S  Q U A N T U M  S Y S T E M S - - G E N E R A L  
CASE 

Our approach will be along similar lines as in Section 3 with the 
proviso that some steps become slightly more complicated due to typical 
quantum effects. Our methods apply to both bosons and fennions. 

L e m m a  2. Let PR := ~ darfR(r) p(r) with p(r) of (2.16), fR(r) as in 
Lemma 1, and n(r):= O+(r)O(r). Then 

Vp(ll(r) =V<n(r)> = lim <(1/ih)[PR, n(r)] > (4.1) 
R ~ o o  

ProoL Relations (2.9) can be used to compute 

(1/ih)[p(r'), t~ +(r) O(r)] = 1[~ +(r) 6 ( r - r ' ) V , ,  ~9(r') 

- ~t + ( r )  Vr, 6(r - r ' )  ~ 9 ( r ' )  - ~t + ( r ' ) g  r, 6 ( r  - r ' )  ~ ( r )  

-t- V r ' ~ /  + (r') ~5(r -- r') O(r)] 
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Therefore, 

((1/ih)[PR, tp + (r) ~(r)])  = I f  ddr' fR(r')(1/ih)[p(r'), tp + (r) ~(r)])  

= V ( 0  +(r) O(r)fR(r)) 

Whenever R > Ir[, we have fR(r) = 1 and the lemma is proven. II 

In the next step we again replace n(r) by n( r ) - {n ( r ) )  and use the 
quantum mechanical KMS condition. Denoting time evolution by c~,, 

~tA := [exp(iffIt/h)] A exp( - ifflt/h) 

it reads 

( AB ) = ( Bc~,hl~A ) (4.2) 

where A and B are elements of the algebra of observables d .  As a con- 
sequence, we have the relation 

( [A ,  B ] )  = ( Bc~ ~hf~ A ) - ( BA ) 

d 
(4.3) 

where /~ denotes the generator of c~, in the concrete representation under 
discussion. Under certain mild assumptions (e.g., that the time 
automorphism is approximately inner, i.e., that more or less 
H ~ l i m l A l ~ _  (HA--HA), with HA the formal Hamiltonian of (2.10) for 
finite volume A, assumed to be affiliated with ~4 (HA the mirror element 
being affiliated with its commutant sJ'),  we can replace [A, HI  with 
[A, HI  :----limlAf~o~ [A, HA] and get 

( [A ,B] )=l f~o  d~ B~i, ,~[A,H])=lj '~dr(~ ,,,~B)[A,H]) (4.4) 

the last equality being a consequence of time-translation invariance of the 
equilibrium state. 

Romork. Usually relations like (4.2) and (4.3) are proved for the sub- 
class of analytic elements of d .  We assume that time evolution can be 
extended to sur in the concrete representation under discussion. We even 
assume the relations to extend to possibly unbounded elements (e.g., 
products of field operators) which are only affiliated with d as long as they 
are sufficiently localized in space (e.g., quasilocal). The possibility of such 
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extensions is discussed in Ref. 22. Nevertheless, the very existence of objects 
like, e.g., O+(x) O(x), imaginary time Green's functions, etc., has 
apparently nowhere been proven for interacting systems and infinite 
volume. So we have to postulate that expressions like these have a well- 
defined meaning in some sense (at least after an appropriate renor- 
malization procedure). 

In our case, (4.4) yields 

g[P~,n(r) ]  = ~ [  R,n(r)-<n(r)>] 

~ > I f  ~ > = dr [cqh~n(r)][P~, HI - dr o:ih~n(r ) [P~R, H] 

- ;dar'{<f~ > 

-fi<n{r)>{~O',,~(r')~'~(r')}} (4.5) 

where cr ~e denotes the quantum mechanical stress tensor introduced in 
(2.14). 

Observation. It is known that for a large class of potentials and cer- 
tain ranges of thermodynamic parameters the so-called reduced density 
matrices are bounded, continuous functions (cf. Ref. 20 or Corollary 6.3.20 
in Ref. 19). Due to the unavoidable lack of normal ordering in certain 
expressions of (4.5) brought about by the complicated term ~ih~n(r), we 
cannot expect this to hold for the expectation values in (4.5). However, on 
physical grounds we expect the expressions in (4.5) and similar ones below 
to be bounded continuous functions in r' provided that they are smeared in 
r with an arbitrary but fixed test function from @ (i.e., a Ca-function with 
compact support). 

In analogy of Section 3 we get: 

T h e o r e m  4. Vp(l l ( r )=0,  whenever f i<  oo and 

(i) fdJrlrl"lVV(r)[<oo for 0~<v~<l 
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(ii) 

=o(ir'l (~ 11) as Ir ' l~o9  forany h~@ 

The proof runs along similar lines as that of Theorem 1. Furthermore, the 
remarks succeeding the proof of Theorem 1 apply here as well. 

Introducing the explicit form of ~/~ into (4.5), we again are able to 
boil this down to some statements concerning the decay of more elemen- 
tary correlation functions. However, in contrast to the classical case, it is 
not the usual truncated n-particle densities that show up, but more com- 
plicated density correlations, and, due to the nontriviality of the kinetic 
part of a ~/~, even correlations involving derivatives of field operators. Now, 
(2.14) and (4.5) yield 

IJ ~ 8~pl~)(r) = lira f d'lr OtlJR(r ') cl~ [~ih~n(r)] 
R ~  x_ [3 

x [ 0~  +(r ') ~/~(r') + J ~  +(r') 0~0(r')]) ~ 

h 2 
f dJr ' #~#t3Jf'R(r') 4m (;o ) 

x dr [~ih~n(r)] [~  * ( r ' )  O(r ' ) ]  
// T 

~' f d+' I ~+1 f d~,,~ ~':r~(r'/(4-41 a~ ~(r,- ~t 

f/ x d s 6 ( r ' - s r l - ( 1 - s ) r x )  dr [e,h~n(r)] 

x [0+( r l )  0+(r2) ~(r2) 0 ( r l ) ] )  

--fl<n(r))<@+(Pl)l~+(r2)O(r2)@(rl))]} (4.6) 

Here and in the following, ( . . . ) r  denotes total truncation, defined in the 
usual way, e.g.: (A( r ) 'B ( r ' ) ) r :=  ( A ( r ) ' B ( r ' ) ) - ( A ( r ) ) ' ( B ( r ' ) )  etc. 
(see also (3.10)). 
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T h e o r e m  5. Vpl l / ( r )=0,  whenever/~< oo and 

(i) fdJrlrl~lVV(r)[<oo for O~<v~< d 

(ii, Fh(r'):=fdarh(r)({fO/dzT,h~[O+(r)~(r)] } [ t ) + ( r ' ) O ( r ' ) ] ) r  

=o(rr'r as I r ' [ ~ o c  forany h c ~  

(iii) Gh(r',r"):=f dJrh(r)({f~ dz~ih~[t)+(r)O(r)]} 

x [~ +(r') ~ +(r") O(r") O( r ' ) ] )  r 

=o([r ' l  (a ~/) uniformly in r" 

as ]r'l--*oo forany h e @  

,iv) Hh(r'):=f dJrh(r,({f~ dz~h~EO+(r,t)(r,]} 

x [O~q? +(r ') O/r (~@(r ' )] /T 

=o(Ir ' l  (~ 1)) as Ir'l--' oo 

for any ~.,fi and any hE 

As the smeared correlations in (ii), (iii), and (iv) are assumed to be 
bounded functions (see observation above), the proof runs along similar 
lines as the treatment of the first and third terms on the rhs of (3.9) in the 
proof of Theorem 2. 

T h e o r e m  6. Vp/~) = 0, whenever/~ < oo and 

(, 

(i) J dar [VV(r)[ < oo 

(ii) Fh(r')=O([r'[ -(J+~)) as 

for any h e 

(iii) Gh(r', r")= O([r'd (J+':)) 
as [r']--* oo for any 

(iv) Hh(r')=o(Ir'l (d 1)) 

for any h e@ 

I l l  ---+ o o  

uniformly in r" 

h ~  

as Ir'l ~ oo 
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Again due to the uniform boundedness of Fh, Gh, and Hh, the proof is 
accomplished by the same strategy as used in those of Theorems 2 and 3. 

Remark. The nontriviality of the kinetic contribution is reflected in 
condition (iv) of the preceding theorems. In classical systems such com- 
plications would only arise in case of the (possibly) exotic non-Maxwellian 
states (cf. remark 1 succeeding the proof of Theorem 3). 

As already indicated at the end of the previous section, the at first 
glance unfamiliar correlation functions Fh, Gl,,  and Hh, involving 
imaginary time integrations, can be given physical significance by the 
following. 

Propos i t ion  2. Let the KMS state obey strong clustering in time. 
Then 

fo dz[((c~ih~A).B)_(A)(B)]=fo~dt ((1/ih)[A,c~,B]) (4.7) 
-{3 

Proof. Using the strong cluster property and (4.3), we get 

fo dr [{(c~,mA).B ) -  ( A ) ( B ) ]  

; (;o ) 
= lira dt dr (c~ih~A)(d/dt)(~tB) 

T ~ o ~  _ f l  

= dt dz((a ih~A)'(1/ih)[~,B,H] 

fo = d t<(1 / ih ) [A ,c~ ,B])  | 

We also mention Theorem 5.4.12 of Ref. 19 in this context. One sees 
that the right-hand sides of (3.11) and (4.7) are just the so-called 
generalized static susceptibilities ZA~ of linear response theory. 

Thus, we may say that a general feature of inhomogeneous classical 
and quantum systems is the poor decay of certain static susceptibility 
functions in position space. 

5. T H E  PLANE I N T E R F A C I A L  LAYER,  C L A S S I C A L  A N D  
Q U A N T U M  C A S E S  

Since the liquid-gas interface of one-component classical fluids has 
already been treated in Ref. 7 we will provide only the necessary minimum 
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of concepts and definitions in order to be able to motivate the approach,  
given in the sequel, for quantum systems. 

We study the case of a plane interface layer in d-dimensional space, 
r =  (Xl ..... xd). In order also to cover situations like solid-gas or solid- 
liquid coexistence, we assume the system to be only invariant under the 
translations belonging to a (d-1) -d imens ional  Bravais lattice with xa 
being perpendicular to the ( d -  1 )-dimensional hyperplane, { r lxj  = 0 }, con- 
taining the lattice. The set of lattice points pf is denoted by G; GR is a finite 
piece of G defined by 

GR := {Pi, x] ~'')2 + "'" + x(;il2d-1 <~ R2 } (5.1) 

Remark. In the case of the spatial coexistence of a crystal and a gas 
or a liquid one has of course to expect that in the vicinity of the crystal 
phase boundary there is a certain regrouping of the crystal atoms by which 
the periodicity of the layers may change. These effects, i.e., a continuous 
change of periodicity parallel to the surface with the distance from the sur- 
face, will be studied elsewhere in order not to overburden the paper with 
respect to complexity of notation. 

Before we come to the quantum case, we would like to make a short 
aside concerning continuous classical systems consisting of several com- 
ponents. A typical example is the so-called Widom-Rowlinson (WR) 
model,(12 14) which exhibits a bulk phase transition already in two dimen- 
sions and which consists of two species A, B. It can be shown that, after 
slight modifications, the procedure developed in Ref. 7 can be extended to 
cover more complex situations like the above with analogous results, e.g., 
there is no stable A - B  interface in two dimensions. 

As already remarked in the introduction, there are indications that a 
flat classical interface cannot be maintained for d = 3 in zero gravity. In our 
view the corresponding arguments are not conclusive in the regime of 
quantum systems. It is well known that, e.g., in superconductors of the 
second kind or superfluids interface formation may be enhanced by a 
possibly negative surface tension (with the orientation of the interfaces 
being obviously independent of the direction of the gravitational field). 

As in Ref. 7, we shall employ from now on a modified cutoff function 
in the expression for PR, i.e., we define fR ( r )= f ( [ r [ /R ) ,  f e C  ~, f ( s ) =  1 
for 0 ~< s < 1, f ( s )  = 0 for s > 2. The main tool in the following will be the 
quantum version of the Bogoliubov inequality, which, in a first step, can be 
shown to hold for the subset of analytic elements of the algebra of obser- 
vables ~ag and then extended to the full sJ by continuity arguments and to 
unbounded operators that are affiliated with sJ under certain technical 
assumptions (see, e.g., Ref. 22). 
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Under this proviso the Bogoliubov inequality reads 

[((ih)-l[A, B])12 <~(fl/2)(B*B+ BB*)((ih)-I[A, (ih) ' [A*, H I ] )  (5.2) 

We refrain from dropping the factors (ih)-I both to exhibit the correspon- 
dence between the classical Poisson bracket {A, B} and (ih) ~[A, B] and 
to be able to identify purely quantum mechanical contributions vanishing 
in the limit h - )  0. 

With G, GR, PR as above, using (5.2) and the translational invariance 
under G, we can write for h e ~ and sufficiently large R: 

( n ( r )  ) 2 1 ~ ) 
IGRI pCGR 

: ([P~R, fddrh(r) l@~lp~aRn(r+p)])2 (5.3) 

I :~ 2 

= ([PR, fddrh(r) I (n(r))) l )  I-d~l ,,~ ( ,(r+p)- 

1 p f d"r I d'r' h(rt h(r') IG~I ~ 
x ~ ~, [ ( n ( r + p ) n ( r ' + p ' ) ) - ( n ( r ) ) ( n ( r ' ) ) ]  

pGGR p ' e G R  

1 = fi f ddr f ddr ' h(r)h(r') 
IG~I---~ 

x ~, ~, [(~+(r+p)r162 
p E G  R p ' E G  R 

' ]) + &(r+p--r'--P')(~+(r+p)O(r+p))] -~ P~,g[P~,H]  

= fl -~ P~, ~ [P~, HI Z ~ ddr ddr' h(r) h(r') 
DeGR p' R 

x pf)(r + p, r'+ p') + f ddr h(r) h(r + p - p') p" )(r)[ (5.4) 

The double sum in this last expression is identical to that arising in the 
classical case. (Note that in the corresponding equation of Ref. 7 a term is 
missing.) Therefore for d~> 2 we have 

1 
2 ~--~--~ ( ) = o( R-(g 2)) as R ~ o o  

P~GR p ' ~ G R  I',J RI 
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whenever p(r2~(r, r ' )=o( lr -r ' l  (d 2)) as Ir--r'l--+ 00. For d =  1 there is no 
lattice average and the double sum reduces to 

f dr f dr' h(r) h(r') pT'(r, r') + f dr h2(r )  p("(r) 

which is bounded and independent of R. Thus, whenever we are able to 
show that 

/ 1 F 1  7 \  ~_~Lp~,_~[p~,H]j)=O(Rd 2) forany d~>l 

by (5.4) we can conclude that Vpll l ( r )= 0. The circumstances under which 
this is possible are stated in the following: 

T h e o r e m  7. Let fl < oo. Then Vp l l / ( r ) -  0 if the following holds: 

(i) p(1)(r), p(21(r, r'), @~9+(r) 3 r  8 ~ ( r ) )  are bounded 
functions, 

(ii) p~)(r,r ,)=o(ir_r,  [ (d 2)) as Ir--r'[--+oo 

(iii) f ddr lr[2l(~)2 V(r)[ < c~, l <~ ~ <~ d 

(iv) pl~l(r)=p(ll(r+p); pt21(r,r')=pl21(r+p,r'+p) forall peG 

Proof. The calculation of the twofold commutator (1/ih)EP~, 
(1/ih)[P~R, H I ]  is somewhat lengthy and cumbersome, but nothing but a 
straightforward application of the (anti-) commutation relations (2.9). We 
quote the result: 

1 
ih PR,-~ EP~ H 

h2 f =--~m ddr ~'cglVR(r) 

x {2fR(r) 0~[3~0 +(r ) J O ( r )  + J O + ( r )  3~O(r)] 

+ 4 J f e ( r )  3~9+(r) 8~b(r) 

+ 3a~fR(r)Ea~O + (r) J ~ ( r )  + J #  + (r) a~O(r)] 

- a ~ J f ~ ( r )  a~Eg,+( r )  g , ( r ) ]  - c~O~c~Zf~(r) g ,+ ( r )  g,(r)  
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-- aZf R(r) a=a~[~+(r) O(r)] -- f R(r) UU#nE ~, + (r) ~9(r)] 

-- 28~fR(r) a~OZE~+(r) ~(r)]  } 

x (~)2 V(r - r ' )  O+(r) O+(r') O(r') O(r) 

f dr  f ddr ' fR(r)#~fR(r)O"V(r--r') + 

x lis + ( r )  I/s + ( r ' )  t/s(r') I/s(r) (5.5) 

The last term in this expression is the only one that does not seem to 
behave well enough in the limit R ~ oo. But since we are only interested in 
expectation values, it can be canceled by the following trick, well known 
from the classical case. ~ Define 

r 
PR := J a~fR(r) p~(r) ddr f tdr) 

By time translation invariance of KMS states we have 
((1/ih)[P~, HI ) = 0 and therefore 

1 P~, [e~ ,  HI  = 1 e~,  [PR,~ H] + ~  [fiR, HI  (5.6) 

The calculation of (1/ih)[P~, HI is again straightforward and yields 

1 h 2 f 
i-h [-~ '  HI =-4-mm ddr ~ fR(r) JfR(r) 

• {c3=0~01~[~ + (r) ~(r)] - 2c9~[8~ + (r) U~0(r) + c3~ + (r) 8 ~ ( r ) ]  } 

- f dar f dar'fR(r) a~f~(r) a=V(r - r') 4, +(r) 4, +(r') ~,(r') ~(r) 

Thus, using (5.6) and performing some partial integrations, we have the 
final result: 

1 P ~ ' g  [P~, H 

=--  dar Y, JfR(r) Jf=(r)(O~O + (r) #~p(r) ) 
m 

312 
+ ~ f ddr E O~fR(r) JfR(r) (a=~ + (r)J~b(r)+ J ~  + (r)#=~(r))  

822/45/5-6-5 
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h 2 

4m f ddr ~" {4c3~cq~0r)CR(r) O~f R(r) + 2C3%q/~JfR(r) c3~f R(r) 

+ 3#~##fR(r) #~JfR(r) + 2C~3~fR(r) Ct~c~fR(r) } pr 

+ �89 f ddr f d dr' [fR(r)--fR(r')]2(3~) 2 V(r--r')pr ') (5.7) 

With the explicit form fR(r )=f ( t r l /R) ,  we see that 0~fe(r)= O(R -l) as 
R ~ oo; thus, the first two terms on the rhs of (5.7) are clearly O(R d 2). 

The fourth term is identical to the one appearing in the classical case 
and is therefore also of order R d 2 (7) 

As to the third term, we note that with our choice of JR, contrary to a 
surmise of Martin, (23) the higher derivatives of fR do not cause any trouble 
whatsoever, but have an even faster decay. The expression in curly brackets 
is immediately seen to be O(R-4); thus the third term is of order R d 4 and 
therefore completely well-behaved. 

Remark 1. The assumed boundedness of ffU0+c~/~9 + U~0+Utk) is 
connected with the rather natural requirement that the pressure tensor 
should be a bounded quantity. 

Remark 2. The third term on the rhs of (5.7) is easily identified as a 
purely quantum mechanical contribution vanishing in the limit h --* 0. This 
term is O(R a 4) and thus reflects the harmlessness of quantum corrections 
like these. 

Remark 3. 

p~l ( r , r , )=o( l r_r , l - ld  2)) as 

is replaced by the weak clustering assumption 

1 
[GRI ~ p ~ l ( r , r ' + p ) = o ( R  ~d 2~) 

pE G,t 

Theorem 7 remains valid if the clustering assumption 

[ r - -  r'l --, oo 

as R ~  oo 

Remark 4. Examples covered by our procedure are plane liquid gas 
or liquid-crystal quantum interfaces as well as purely crystalline states. 

Remark 5. Under the assumptions made in Theorem 7 or remark 3, 
Vp (11- 0, whenever d~< 2, provided that there is some sort of clustering of 
p~) at all. 
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